Call:
Email:
Address: Universidad Pública de Navarra, Spain
ABOUT ME
Currently at Universidad Pública de Navarra
PUBLICATIONS
2017
Ruiz-Gómez, Nadia; Quispe, Violeta; Ábrego, Javier; Atienza-Martínez, María; Murillo, María Benita; Gea, Gloria
Co-pyrolysis of sewage sludge and manure Journal Article
In: Waste Management, vol. 59, pp. 211–221, 2017, ISSN: 18792456.
@article{Ruiz-Gomez2017,
title = {Co-pyrolysis of sewage sludge and manure},
author = {Nadia Ruiz-Gómez and Violeta Quispe and Javier Ábrego and María Atienza-Martínez and María Benita Murillo and Gloria Gea},
doi = {10.1016/j.wasman.2016.11.013},
issn = {18792456},
year = {2017},
date = {2017-01-01},
journal = {Waste Management},
volume = {59},
pages = {211--221},
publisher = {Elsevier Ltd},
abstract = {The management and valorization of residual organic matter, such as sewage sludge and manure, is gaining interest because of the increasing volume of these residues, their localized generation and the related problems. The anaerobic digestion of mixtures of sewage sludge and manure could be performed due to the similarities between both residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of sewage sludge (SS) and digested manure (DM) as a potential management technology for these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 525 °C in a stirred batch reactor under N2 atmosphere. The product yields and some characteristics of the product were analyzed and compared to the results obtained in the pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-pyrolysis process were evaluated. Although sewage sludge and manure seem similar in nature, there are differences in their pyrolysis product properties and distribution due to their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the product yields did not show noticeable synergistic effects with the exception of the yields of organic compounds, being slightly higher than the predicted average, and the H2 yield, being lower than expected. Co-pyrolysis of SS and DM could be a feasible management alternative for these residues in locations where both residues are generated, since the benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each residue.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2015
Atienza-Martínez, María; Fonts, Isabel; Lázaro, Luisa; Ceamanos, Jesús; Gea, Gloria
Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor Journal Article
In: Chemical Engineering Journal, vol. 259, pp. 467–480, 2015, ISSN: 13858947.
@article{Atienza-Martinez2015a,
title = {Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor},
author = {María Atienza-Martínez and Isabel Fonts and Luisa Lázaro and Jesús Ceamanos and Gloria Gea},
doi = {10.1016/j.cej.2014.08.004},
issn = {13858947},
year = {2015},
date = {2015-01-01},
journal = {Chemical Engineering Journal},
volume = {259},
pages = {467--480},
publisher = {Elsevier},
abstract = {The pyrolysis of dry and of torrefied sewage sludge in a lab-scale fluidized bed reactor has been studied in order to determine whether torrefaction pre-treatment could enhance the properties of the liquid product obtained after pyrolysis. The aim of this work is to evaluate the influence of the torrefaction temperature (220-320°C) and average solid residence time (3.6-10.2min) on the product distribution and the properties of the pyrolysis products. Pyrolysis was conducted at 530°C with an average solid residence time of 5.7min and a nitrogen volumetric flow per reactor area of 0.074m3(STP)m-2s-1 (measured at 0°C and 1.01textperiodcentered105Pa). The experimental results show that torrefaction pre-treatment affects the pyrolysis liquid product, although it does not improve the homogeneity of the liquid. Specifically, it reduces the yields of water and the liquid aqueous phase obtained in the pyrolysis step, especially after torrefaction under the most severe conditions, but it does not have a great effect on the properties of the liquid organic phases obtained. The cumulative yields of gas and organic compounds from the two-step process are not different from the yields obtained from one-step pyrolysis. textcopyright 2014 Elsevier B.V.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Atienza-Martínez, María; Mastral, José Francisco; Ábrego, Javier; Ceamanos, Jesús; Gea, Gloria
Sewage sludge torrefaction in an auger reactor Journal Article
In: Energy and Fuels, vol. 29, no. 1, pp. 160–170, 2015, ISSN: 15205029.
@article{Atienza-Martinez2015b,
title = {Sewage sludge torrefaction in an auger reactor},
author = {María Atienza-Martínez and José Francisco Mastral and Javier Ábrego and Jesús Ceamanos and Gloria Gea},
url = {https://pubs.acs.org/sharingguidelines},
doi = {10.1021/ef501425h},
issn = {15205029},
year = {2015},
date = {2015-01-01},
journal = {Energy and Fuels},
volume = {29},
number = {1},
pages = {160--170},
publisher = {American Chemical Society},
abstract = {A lab-scale auger reactor was used for the study of dry sewage sludge torrefaction. The influence of the torrefaction temperature (between 250 and 300 °C) and the solid residence time (between 13 and 35 min) on the product distribution and properties was investigated. The results have shown that both parameters affect dry sewage sludge torrefaction products to a similar extent within the ranges of study. The yield of torrefied sewage sludge decreases when increasing the torrefaction temperature and the solid residence time, while the yields of liquid and noncondensable gases show the opposite trend. Carbon dioxide and hydrogen sulfide are the major noncondensable products. The yield of water is higher than the initial moisture content of sewage sludge. Organic compounds are also released during torrefaction, especially under severe conditions. Torrefaction liquid separates into an organic phase and an aqueous phase. The former is rich in oxygen-containing aliphatic compounds and steroids and their derivatives. The latter is rich in oxygen-containing aliphatic compounds and oxygen- and nitrogen-containing aliphatic compounds. Torrefaction pretreatment eases sewage sludge grindability and improves some of its fuel properties. O/C and H/C molar ratios of the torrefied solid are lower than those of the dry sewage sludge, while the higher heating value (daf) is higher. The energy density is higher under specific torrefaction conditions.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2013
Atienza-Martínez, María; Fonts, Isabel; Ábrego, Javier; Ceamanos, Jesús; Gea, Gloria
Sewage sludge torrefaction in a fluidized bed reactor Journal Article
In: Chemical Engineering Journal, vol. 222, pp. 534–545, 2013, ISSN: 13858947.
@article{Atienza-Martinez2013,
title = {Sewage sludge torrefaction in a fluidized bed reactor},
author = {María Atienza-Martínez and Isabel Fonts and Javier Ábrego and Jesús Ceamanos and Gloria Gea},
url = {http://www.sciencedirect.com/science/article/pii/S1385894713002416},
issn = {13858947},
year = {2013},
date = {2013-04-01},
journal = {Chemical Engineering Journal},
volume = {222},
pages = {534--545},
abstract = {Torrefaction of sewage sludge in a lab-scale fluidized bed reactor was studied in order to know if this pre-treatment could enhance the properties of this waste in subsequent thermochemical processing, such as pyrolysis. The influence was studied of two important torrefaction operational parameters, temperature (220–320°C) and solid residence time (3.6–10.2min), on the product distribution and properties. Taking into account the operation conditions evaluated in this work, torrefaction temperature affects solid product properties at long solid residence times (longer than 6.1min) and that the effect of solid residence time is only significant at the highest temperature (320°C). Severe torrefaction conditions result in the release of bonded water which could enhance some properties of the liquid obtained in the ensuing pyrolysis process. However, the torrefaction pre-treatment also implies that part of the extractives is lost from the raw material. Compared to dry raw sewage sludge, the energy density of sewage sludge after torrefaction increases under certain conditions. The removal of H2O and CO2 during the torrefaction step reduces the O/C ratio in the torrefied solid up to 0.12 (66.70% reduction compared to 0.37 in raw sewage sludge) which could be a benefit for subsequent thermochemical treatments. For example, one of the main drawbacks of pyrolysis liquids is their high oxygen content.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Ábrego, Javier; Sánchez, José Luis; Arauzo, Jesús; Fonts, Isabel; Gil-Lalaguna, Noemí; Atienza-Martínez, María
Technical and Energetic Assessment of a Three-Stage Thermochemical Treatment for Sewage Sludge Journal Article
In: Energy & Fuels, vol. 27, no. 2, pp. 1026–1034, 2013, ISSN: 0887-0624.
@article{Abrego2013,
title = {Technical and Energetic Assessment of a Three-Stage Thermochemical Treatment for Sewage Sludge},
author = {Javier Ábrego and José Luis Sánchez and Jesús Arauzo and Isabel Fonts and Noemí Gil-Lalaguna and María Atienza-Martínez},
url = {http://dx.doi.org/10.1021/ef3018095},
issn = {0887-0624},
year = {2013},
date = {2013-02-01},
journal = {Energy & Fuels},
volume = {27},
number = {2},
pages = {1026--1034},
publisher = {American Chemical Society},
abstract = {A three-stage thermochemical process comprising torrefaction, pyrolysis, and char activation is proposed for the treatment of dry sewage sludge or biomass materials. To assess the feasibility of the process, lab-scale experiments were carried out with dried sewage sludge as feedstock, and mass and energy balances were calculated. In the process, 19.3% of the sewage sludge initial weight was transformed into a bio-oil with three distinct phases and reduced water content (66.1% of water content in the aqueous phase compared to 73.8% in a single-step fast pyrolysis). The product gases had a high H2S content but also enough heating value to be combusted. After being activated by the torrefaction vapors, the solid fraction (48.2% of the initial sludge weight) showed certain pore development and might be suitable for adsorption applications. Regarding the energy balance, it was found that the combustion of part of the product gas would provide the necessary heat to drive the process (1019 kJ/kg of dry sewage sludge).
A three-stage thermochemical process comprising torrefaction, pyrolysis, and char activation is proposed for the treatment of dry sewage sludge or biomass materials. To assess the feasibility of the process, lab-scale experiments were carried out with dried sewage sludge as feedstock, and mass and energy balances were calculated. In the process, 19.3% of the sewage sludge initial weight was transformed into a bio-oil with three distinct phases and reduced water content (66.1% of water content in the aqueous phase compared to 73.8% in a single-step fast pyrolysis). The product gases had a high H2S content but also enough heating value to be combusted. After being activated by the torrefaction vapors, the solid fraction (48.2% of the initial sludge weight) showed certain pore development and might be suitable for adsorption applications. Regarding the energy balance, it was found that the combustion of part of the product gas would provide the necessary heat to drive the process (1019 kJ/kg of dry sewage sludge).},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
A three-stage thermochemical process comprising torrefaction, pyrolysis, and char activation is proposed for the treatment of dry sewage sludge or biomass materials. To assess the feasibility of the process, lab-scale experiments were carried out with dried sewage sludge as feedstock, and mass and energy balances were calculated. In the process, 19.3% of the sewage sludge initial weight was transformed into a bio-oil with three distinct phases and reduced water content (66.1% of water content in the aqueous phase compared to 73.8% in a single-step fast pyrolysis). The product gases had a high H2S content but also enough heating value to be combusted. After being activated by the torrefaction vapors, the solid fraction (48.2% of the initial sludge weight) showed certain pore development and might be suitable for adsorption applications. Regarding the energy balance, it was found that the combustion of part of the product gas would provide the necessary heat to drive the process (1019 kJ/kg of dry sewage sludge).