SOBRE MÍ
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
PUBLICATIONS
2022
Marrodán, Lorena; Millera, Ángela; Bilbao, Rafael; Alzueta, María U
An experimental and modeling study of acetylene-dimethyl ether mixtures oxidation at high-pressure Artículo de revista
En: Fuel, vol. 327, pp. 125143, 2022, ISSN: 0016-2361.
@article{Marrodan2022,
title = {An experimental and modeling study of acetylene-dimethyl ether mixtures oxidation at high-pressure},
author = {Lorena Marrodán and Ángela Millera and Rafael Bilbao and María U Alzueta},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0016236122019846},
doi = {10.1016/J.FUEL.2022.125143},
issn = {0016-2361},
year = {2022},
date = {2022-11-01},
urldate = {2022-11-01},
journal = {Fuel},
volume = {327},
pages = {125143},
publisher = {Elsevier},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Marrodán, Lorena; Millera, Ángela; Bilbao, Rafael; Alzueta, María U
Experimental and Modeling Evaluation of Dimethoxymethane as an Additive for High-Pressure Acetylene Oxidation Artículo de revista
En: The Journal of Physical Chemistry A, vol. 2022, pp. 6263, 2022, ISSN: 1089-5639.
@article{Marrodan2022b,
title = {Experimental and Modeling Evaluation of Dimethoxymethane as an Additive for High-Pressure Acetylene Oxidation},
author = {Lorena Marrodán and Ángela Millera and Rafael Bilbao and María U Alzueta},
url = {https://pubs.acs.org/doi/full/10.1021/acs.jpca.2c03130},
doi = {10.1021/ACS.JPCA.2C03130},
issn = {1089-5639},
year = {2022},
date = {2022-09-01},
urldate = {2022-09-01},
journal = {The Journal of Physical Chemistry A},
volume = {2022},
pages = {6263},
publisher = {American Chemical Society},
abstract = {The high-pressure oxidation of acetylene–dimethoxymethane (C2H2–DMM) mixtures in a tubular flow reactor has been analyzed from both experimental and modeling perspectives. In addition to pressure (...},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Alexandrino, Katiuska; Millera, Ángela; Bilbao, Rafael; Alzueta, María U
Experimental and simulation study of the high pressure oxidation of dimethyl carbonate Artículo de revista
En: Fuel, vol. 309, pp. 122154, 2022, ISSN: 0016-2361.
@article{Alexandrino2022,
title = {Experimental and simulation study of the high pressure oxidation of dimethyl carbonate},
author = {Katiuska Alexandrino and Ángela Millera and Rafael Bilbao and María U Alzueta},
doi = {10.1016/J.FUEL.2021.122154},
issn = {0016-2361},
year = {2022},
date = {2022-02-01},
urldate = {2022-02-01},
journal = {Fuel},
volume = {309},
pages = {122154},
publisher = {Elsevier},
abstract = {An experimental and modeling study of the oxidation at high pressure of dimethyl carbonate (DMC) has been performed in a quartz tubular flow reactor. Experimental and simulated concentrations of DMC, CO, CO2 and H2 have been obtained for different temperatures (500–1073 K), pressures (20, 40, and 60 atm) and stoichiometries ($łambda$ = 0.7, 1, and 35). Both pressure and concentration of oxygen are important parameters for conversion of DMC. The simulations have been carried out using a detailed kinetic mechanism previously developed by the research group. In general, the model is able to reproduce the experimental trends of the different concentration profiles, although some discrepancies are observed between experimental and simulation results. The performance of the model was also evaluated through the simulation of literature data of the oxidation of DMC at atmospheric pressure in a flow reactor and of the DMC ignition delay times under low and high pressures. In this sense, this work contributes to the knowledge of the combustion process of DMC, by providing new experimental data on the conversion of DMC at high pressures and using a kinetic model for the interpretation of the results.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Alexandrino, Katiuska; Millera, Ángela; Bilbao, Rafael; Alzueta, María U
Experimental and simulation study of the high pressure oxidation of dimethyl carbonate Artículo de revista
En: Fuel, vol. 309, no October 2021, 2022, ISSN: 00162361.
@article{Alexandrino2022b,
title = {Experimental and simulation study of the high pressure oxidation of dimethyl carbonate},
author = {Katiuska Alexandrino and Ángela Millera and Rafael Bilbao and María U Alzueta},
doi = {10.1016/j.fuel.2021.122154},
issn = {00162361},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {Fuel},
volume = {309},
number = {October 2021},
abstract = {An experimental and modeling study of the oxidation at high pressure of dimethyl carbonate (DMC) has been performed in a quartz tubular flow reactor. Experimental and simulated concentrations of DMC, CO, CO2 and H2 have been obtained for different temperatures (500–1073 K), pressures (20, 40, and 60 atm) and stoichiometries ($łambda$ = 0.7, 1, and 35). Both pressure and concentration of oxygen are important parameters for conversion of DMC. The simulations have been carried out using a detailed kinetic mechanism previously developed by the research group. In general, the model is able to reproduce the experimental trends of the different concentration profiles, although some discrepancies are observed between experimental and simulation results. The performance of the model was also evaluated through the simulation of literature data of the oxidation of DMC at atmospheric pressure in a flow reactor and of the DMC ignition delay times under low and high pressures. In this sense, this work contributes to the knowledge of the combustion process of DMC, by providing new experimental data on the conversion of DMC at high pressures and using a kinetic model for the interpretation of the results.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Colom-Díaz, Juan Manuel; Millera, Ángela; Bilbao, Rafael; Alzueta, María U
Conversion of H2S/O2/NO mixtures at different pressures. Experiments and kinetic modeling Artículo de revista
En: Fuel, vol. 290, pp. 120060, 2021, ISSN: 00162361.
@article{Colom-Diaz2021b,
title = {Conversion of H2S/O2/NO mixtures at different pressures. Experiments and kinetic modeling},
author = {Juan Manuel Colom-Díaz and Ángela Millera and Rafael Bilbao and María U Alzueta},
doi = {10.1016/j.fuel.2020.120060},
issn = {00162361},
year = {2021},
date = {2021-04-01},
journal = {Fuel},
volume = {290},
pages = {120060},
publisher = {Elsevier Ltd},
abstract = {The present study deals with the oxidation of H2S/NO mixtures, in the temperature range of 475–1400 K, at atmospheric pressure and 20 bar of manometric pressure. The experiments have been performed in two different set-ups, using tubular flow reactors, for different air excess ratios ($łambda$H2S = 0.3–6). A kinetic model has been updated with recent reactions from the literature. When NO is present, the oxidation of H2S at atmospheric pressure proceeds at slightly higher temperatures (25 K) with respect to neat H2S oxidation. At high pressure (20 bar), the experiments of the oxidation of H2S in the absence and presence of NO have been performed only at oxidizing conditions ($łambda$H2S = 2 and $łambda$H2S = 6), in order to avoid sulfur formation under reducing conditions. The outcomes of these experiments show that, in presence of NO, at the lowest temperature considered (475 K), at least 50% of H2S conversion for $łambda$H2S = 2 and 90% for $łambda$H2S = 6 is obtained. In order to further evaluate the influence of the presence of NO in H2S oxidation, additional experiments of neat NO oxidation have been performed. As NO2 formation is favored at high pressures and high O2 concentrations, the NO2-H2S interaction is thought to be responsible for the consumption of H2S, even at low temperatures (475 K). While the kinetic mechanism is able to reproduce the experimental results at atmospheric pressure, discrepancies are more relevant at high pressure (20 bar).},
keywords = {},
pubstate = {published},
tppubtype = {article}
}