SOBRE MÍ
Research Interests
- Pyrolysis and gasification of lignocellulosic biomass and waste, mainly biological residues, i. e. sewage sludge, meat and bone meal or livestock manure.
- Bio-oil characterization and refining.
- High-value added products from bio-oil: isolation and characterization.
- Char adsorbents for hydrogen sulfide and ammonium.
- Ammonia sustainable production.
PUBLICATIONS
2024
Fonts, Isabel; Lázaro, Cristina; Cornejo, Alfonso; Sánchez, José Luis; Afailal, Zainab; Gil-Lalaguna, Noemí; Arauzo, Jesús
Bio-oil Fractionation According to Polarity and Molecular Size: Characterization and Application as Antioxidants Artículo de revista
En: Energy & Fuels, 2024, ISSN: 0887-0624, (Publisher: American Chemical Society).
@article{fonts_bio-oil_2024,
title = {Bio-oil Fractionation According to Polarity and Molecular Size: Characterization and Application as Antioxidants},
author = {Isabel Fonts and Cristina Lázaro and Alfonso Cornejo and José Luis Sánchez and Zainab Afailal and Noemí Gil-Lalaguna and Jesús Arauzo},
url = {https://doi.org/10.1021/acs.energyfuels.4c02641},
doi = {10.1021/acs.energyfuels.4c02641},
issn = {0887-0624},
year = {2024},
date = {2024-09-01},
urldate = {2024-09-01},
journal = {Energy & Fuels},
abstract = {Bio-oil obtained from biomass pyrolysis has great potential for several applications after being upgraded and refined. This study established a method for separating bio-oil into different fractions based on polarity and molecular size to extract phenolic and polyphenolic compounds with antioxidant properties. The fractions were analyzed using various spectroscopic and chromatographic techniques, such as GC/MS, FTIR, UV–vis, SEC, DOSY-NMR, 13C-NMR, and 31P-NMR. The antioxidant properties of these fractions were tested by examining their ability to improve the oxidative stability of biodiesel. The results strongly connected the bio-oil’s chemical functionalities and antioxidant power. During solvent fractionation, dichloromethane could extract phenolic structures, which were subsequently size-fractionated. The subfractions with lower molecular weight (in the order of monomers and dimers) outperformed the antioxidant potential of the crude bio-oil. Heavier subfractions from dichloromethane extraction did not show good antioxidant abilities, which was related to the low hydroxy group content. After solvent extraction, phenolic oligomers remained in the water-insoluble/dichloromethane-insoluble fraction, which showed good antioxidant potential despite its low solubility in biodiesel.},
note = {Publisher: American Chemical Society},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2023
Afailal, Zainab; Gil-Lalaguna, Noemí; Fonts, Isabel; Gonzalo, Alberto; Arauzo, Jesús; Sánchez, José Luis
Thermochemical valorization of argan nutshells: Torrefaction and air–steam gasification Artículo de revista
En: Fuel, vol. 332, pp. 125970, 2023, ISSN: 0016-2361.
@article{Afailal2023,
title = {Thermochemical valorization of argan nutshells: Torrefaction and air–steam gasification},
author = {Zainab Afailal and Noemí Gil-Lalaguna and Isabel Fonts and Alberto Gonzalo and Jesús Arauzo and José Luis Sánchez},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0016236122027946},
doi = {10.1016/J.FUEL.2022.125970},
issn = {0016-2361},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {Fuel},
volume = {332},
pages = {125970},
publisher = {Elsevier},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2022
Gil-Lalaguna, Noemí; Navarro-Gil, África; Carstensen, Hans-Heinrich; Ruiz, Joaquín; Fonts, Isabel; Ceamanos, Jesús; Murillo, María Benita; Gea, Gloria
CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect? Artículo de revista
En: Science of The Total Environment, vol. 846, pp. 157395, 2022, ISSN: 0048-9697.
@article{Gil-Lalaguna2022,
title = {CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect?},
author = {Noemí Gil-Lalaguna and África Navarro-Gil and Hans-Heinrich Carstensen and Joaquín Ruiz and Isabel Fonts and Jesús Ceamanos and María Benita Murillo and Gloria Gea},
doi = {10.1016/J.SCITOTENV.2022.157395},
issn = {0048-9697},
year = {2022},
date = {2022-11-01},
urldate = {2022-11-01},
journal = {Science of The Total Environment},
volume = {846},
pages = {157395},
publisher = {Elsevier},
abstract = {Biogas generation through anaerobic digestion provides an interesting opportunity to valorize some types of animal waste materials whose management is increasingly complicated by legal and environmental restrictions. To successfully expand anaerobic digestion in livestock areas, operational issues such as digestate management must be addressed in an economical and environmentally sustainable way. Biogas upgrading is another necessary stage before intending it to add-value applications. The high concentration of CO2 in biogas results in a reduced caloric value, so the removal of CO2 would be beneficial for most end-users. The current work evaluates the CO2 uptake properties (thermogravimetry study) of low-cost adsorbent materials produced from the animal wastes generated in the livestock area itself, specifically via pyrolysis of poorly biodegradable materials, such as meat and bone meal, and the digestate from manure anaerobic digestion. Therefore, the new element in this study with respect to other studies found in the literature related to biochar-based CO2 adsorption performance is the presence of high content of pyrolyzed proteins in the adsorbent material. In this work, pyrolyzed chars from both meat and bone meal and co-digested manure have been proven to adsorb CO2 reversibly, and also the chars produced from their representative pure proteins (collagen and soybean protein), which were evaluated as model compounds for a better understanding of the individual performance of proteins. The ultra-microporosity developed in the protein chars during pyrolysis seems to be the main explanation for such CO2 uptake capacities, while neither the BET surface area nor N-functionalities on the char surface can properly explain the observed results. Although the CO2 adsorption capacities of these pristine chars (6–41.0 mg CO2/g char) are far away from data of commercially activated carbons ($sim$80 mg CO2/g char), this application opens a new via to integrate and valorize these wastes in the circular economy of the primary sector.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Adánez-Rubio, Iñaki; Fonts, Isabel; Blas, P; Viteri, Fausto; Gea, Gloria; Alzueta, María U
Exploratory study of polycyclic aromatic hydrocarbons occurrence and distribution in manure pyrolysis products Artículo de revista
En: Journal of Analytical and Applied Pyrolysis, vol. 155, pp. 105078, 2021, ISSN: 01652370.
@article{Adanez-Rubio2021,
title = {Exploratory study of polycyclic aromatic hydrocarbons occurrence and distribution in manure pyrolysis products},
author = {Iñaki Adánez-Rubio and Isabel Fonts and P Blas and Fausto Viteri and Gloria Gea and María U Alzueta},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0165237021000644},
doi = {10.1016/j.jaap.2021.105078},
issn = {01652370},
year = {2021},
date = {2021-05-01},
journal = {Journal of Analytical and Applied Pyrolysis},
volume = {155},
pages = {105078},
publisher = {Elsevier},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Fonts, Isabel; Atienza-Martínez, María; Carstensen, Hans-Heinrich; Benés, Mario; Pires, Anamaria Paiva Pinheiro; Garcia-Perez, Manuel; Bilbao, Rafael
Thermodynamic and Physical Property Estimation of Compounds Derived from the Fast Pyrolysis of Lignocellulosic Materials Artículo de revista
En: Energy & Fuels, 2021.
@article{Fonts2021,
title = {Thermodynamic and Physical Property Estimation of Compounds Derived from the Fast Pyrolysis of Lignocellulosic Materials},
author = {Isabel Fonts and María Atienza-Martínez and Hans-Heinrich Carstensen and Mario Benés and Anamaria Paiva Pinheiro Pires and Manuel Garcia-Perez and Rafael Bilbao},
url = {https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.1c01709},
doi = {10.1021/ACS.ENERGYFUELS.1C01709},
year = {2021},
date = {2021-01-01},
journal = {Energy & Fuels},
publisher = {American Chemical Society},
abstract = {The development of biomass pyrolysis oil refineries is a very promising path for the production of biofuels and bioproducts from lignocellulosic materials. Given that bio-oil is a complex mixture o...},
keywords = {},
pubstate = {published},
tppubtype = {article}
}