SOBRE MÍ
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
PUBLICATIONS
2024
Lete, Alejandro; Raso, Raquel; García, Lucía; Ruiz, Joaquín; Arauzo, Jesús
Synthesis of ketones from glycerol and 1,2-propanediol using copper and nickel catalysts: Unraveling the impact of reaction phase and active metal Artículo de revista
En: Fuel, vol. 371, pp. 132001, 2024, ISSN: 0016-2361.
@article{lete_synthesis_2024,
title = {Synthesis of ketones from glycerol and 1,2-propanediol using copper and nickel catalysts: Unraveling the impact of reaction phase and active metal},
author = {Alejandro Lete and Raquel Raso and Lucía García and Joaquín Ruiz and Jesús Arauzo},
url = {https://www.sciencedirect.com/science/article/pii/S0016236124011499},
doi = {10.1016/j.fuel.2024.132001},
issn = {0016-2361},
year = {2024},
date = {2024-09-01},
urldate = {2024-09-01},
journal = {Fuel},
volume = {371},
pages = {132001},
abstract = {Catalysts based on nickel-aluminum and copper–aluminum were synthesized through the coprecipitation method with a Ni or Cu content of 28 mol%, expressed as Ni/(Ni + Al) or Cu/(Cu + Al). The catalysts were calcined at 675 °C and thoroughly analyzed using various characterization techniques (ICP-OES, N2 adsorption–desorption, NH3-TPD, CO2-TPD, XRD, H2-TPR and elemental analysis). The samples were tested in two different reaction systems, gas phase at atmospheric pressure and liquid phase at 34 absolute bar, to investigate the production of ketones from glycerol and 1,2-propanediol under reaction conditions of 227 °C and a mass of catalyst/reagent mass flow rate ratio (W/m) of 10 gCatalyst·min/gReagent. The characterization results revealed catalysts with high specific surface area and nickel and copper metallic particles, exhibiting good catalytic activity towards liquid products. Gas phase reactions favored the generation of acetol and carbon deposits, which were minimal in liquid phase reactions. The active metal played a crucial role, and it was demonstrated that copper, with a higher number of acidic sites, exhibited greater selectivity towards ketones than the nickel catalyst. The best performance was achieved by the CuAl catalyst in the gas phase reaction of glycerol, with a conversion of 67.0 ± 4.0 %, a carbon selectivity to acetol in the liquid products of 61.4 % and a yield to acetol of 119.8 mgAcetol/gGlycerol.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Fonts, Isabel; Lázaro, Cristina; Cornejo, Alfonso; Sánchez, José Luis; Afailal, Zainab; Gil-Lalaguna, Noemí; Arauzo, Jesús
Bio-oil Fractionation According to Polarity and Molecular Size: Characterization and Application as Antioxidants Artículo de revista
En: Energy & Fuels, 2024, ISSN: 0887-0624, (Publisher: American Chemical Society).
@article{fonts_bio-oil_2024,
title = {Bio-oil Fractionation According to Polarity and Molecular Size: Characterization and Application as Antioxidants},
author = {Isabel Fonts and Cristina Lázaro and Alfonso Cornejo and José Luis Sánchez and Zainab Afailal and Noemí Gil-Lalaguna and Jesús Arauzo},
url = {https://doi.org/10.1021/acs.energyfuels.4c02641},
doi = {10.1021/acs.energyfuels.4c02641},
issn = {0887-0624},
year = {2024},
date = {2024-09-01},
urldate = {2024-09-01},
journal = {Energy & Fuels},
abstract = {Bio-oil obtained from biomass pyrolysis has great potential for several applications after being upgraded and refined. This study established a method for separating bio-oil into different fractions based on polarity and molecular size to extract phenolic and polyphenolic compounds with antioxidant properties. The fractions were analyzed using various spectroscopic and chromatographic techniques, such as GC/MS, FTIR, UV–vis, SEC, DOSY-NMR, 13C-NMR, and 31P-NMR. The antioxidant properties of these fractions were tested by examining their ability to improve the oxidative stability of biodiesel. The results strongly connected the bio-oil’s chemical functionalities and antioxidant power. During solvent fractionation, dichloromethane could extract phenolic structures, which were subsequently size-fractionated. The subfractions with lower molecular weight (in the order of monomers and dimers) outperformed the antioxidant potential of the crude bio-oil. Heavier subfractions from dichloromethane extraction did not show good antioxidant abilities, which was related to the low hydroxy group content. After solvent extraction, phenolic oligomers remained in the water-insoluble/dichloromethane-insoluble fraction, which showed good antioxidant potential despite its low solubility in biodiesel.},
note = {Publisher: American Chemical Society},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lete, Alejandro; García, Lucía; Ruiz, Joaquín; Arauzo, Jesús
Catalytic Conversion of 1,2-propanediol to 2-propanone: An Exploratory Study Artículo de revista
En: Chemical Engineering Transactions, vol. 109, pp. 133–138, 2024, ISSN: 2283-9216.
@article{lete_catalytic_2024,
title = {Catalytic Conversion of 1,2-propanediol to 2-propanone: An Exploratory Study},
author = {Alejandro Lete and Lucía García and Joaquín Ruiz and Jesús Arauzo},
doi = {10.3303/CET24109023},
issn = {2283-9216},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Chemical Engineering Transactions},
volume = {109},
pages = {133–138},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2023
Raso, Raquel; Lete, Alejandro; García, Lucía; Ruiz, Joaquín; Oliva, Miriam; Arauzo, Jesús
Aqueous phase hydrogenolysis of glycerol with in situ generated hydrogen over Ni/Al3Fe1 catalyst: effect of the calcination temperature Artículo de revista
En: RSC Advances, vol. 13, no 8, pp. 5483–5495, 2023, ISSN: 2046-2069, (Publisher: The Royal Society of Chemistry).
@article{raso_aqueous_2023,
title = {Aqueous phase hydrogenolysis of glycerol with in situ generated hydrogen over Ni/Al3Fe1 catalyst: effect of the calcination temperature},
author = {Raquel Raso and Alejandro Lete and Lucía García and Joaquín Ruiz and Miriam Oliva and Jesús Arauzo},
url = {https://pubs.rsc.org/en/content/articlelanding/2023/ra/d2ra07929a},
doi = {10.1039/D2RA07929A},
issn = {2046-2069},
year = {2023},
date = {2023-02-01},
urldate = {2023-02-01},
journal = {RSC Advances},
volume = {13},
number = {8},
pages = {5483–5495},
abstract = {The present work studied the influence of the calcination temperature on the aqueous phase hydrogenolysis of glycerol with in situ generated hydrogen over a Ni/Al3Fe1 catalyst. The Ni/Al3Fe1 catalyst was synthesized by the co-precipitation method at 28 mol% of Ni (Ni/(Ni + Al + Fe)) and a molar ratio of Al/Fe of 3/1. The prepared catalyst was calcined at different temperatures (500–750 °C). The obtained samples were tested for the aqueous phase hydrogenolysis (APH) of glycerol and characterized by several analytical techniques (ICP-OES, H2-TPR, XRD, N2-physisorption, NH3-TPD, STEM, FESEM, and TGA). The catalyst calcined at 625 °C was selected as the best sample due to its high acidity, metal dispersion, and catalytic activity; 1,2-propanediol was the highest carbon selectivity product. In addition, it experienced lower metal leaching than the catalyst calcined at 500 °C.},
note = {Publisher: The Royal Society of Chemistry},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Afailal, Zainab; Gil-Lalaguna, Noemí; Fonts, Isabel; Gonzalo, Alberto; Arauzo, Jesús; Sánchez, José Luis
Thermochemical valorization of argan nutshells: Torrefaction and air–steam gasification Artículo de revista
En: Fuel, vol. 332, pp. 125970, 2023, ISSN: 0016-2361.
@article{Afailal2023,
title = {Thermochemical valorization of argan nutshells: Torrefaction and air–steam gasification},
author = {Zainab Afailal and Noemí Gil-Lalaguna and Isabel Fonts and Alberto Gonzalo and Jesús Arauzo and José Luis Sánchez},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0016236122027946},
doi = {10.1016/J.FUEL.2022.125970},
issn = {0016-2361},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {Fuel},
volume = {332},
pages = {125970},
publisher = {Elsevier},
keywords = {},
pubstate = {published},
tppubtype = {article}
}