SOBRE MÍ
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum .Lorem ipsum dolor sit amet, consectetur.
PUBLICATIONS
2025
Navarro, África; Fonts, Isabel; Ruiz, Joaquín; Ceamanos, Jesús; Gil-Lalaguna, Noemí; Murillo, María Benita; Gea, Gloria
The role of biogenic waste composition on pyrolysis: Part I – Char properties Artículo de revista
En: Biomass and Bioenergy, vol. 197, pp. 107778, 2025, ISSN: 0961-9534.
@article{NAVARRO2025107778,
title = {The role of biogenic waste composition on pyrolysis: Part I – Char properties},
author = {África Navarro and Isabel Fonts and Joaquín Ruiz and Jesús Ceamanos and Noemí Gil-Lalaguna and María Benita Murillo and Gloria Gea},
url = {https://www.sciencedirect.com/science/article/pii/S0961953425001898},
doi = {https://doi.org/10.1016/j.biombioe.2025.107778},
issn = {0961-9534},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Biomass and Bioenergy},
volume = {197},
pages = {107778},
abstract = {The yield and properties of char derived from the co-digested manure and its main macro-components, including organic (cellulose, lignin, and protein) components and an inorganic component (CaCO3), produced at different pyrolysis temperatures (350, 550, and 750 °C) have been studied. Experimental results obtained from a surrogate co-digested manure were compared with the theoretically calculated values to explore potential interactions between these macro-components. The char properties analyzed included elemental analysis, pH, FTIR, XPS, and specific surface area. The effect of pyrolysis temperature on many properties was similar, regardless of the precursor (macro-component). Increasing pyrolysis temperature led to higher C content (>90 wt% for cellulose char at 750 °C), pH (from (∼7 for cellulose at 350 °C to ∼13 for co-digested manure), and specific surface area, observing a marked development of ultramicroporosity and microporosity, especially at the highest pyrolysis temperature studied, 750 °C. An exception was observed for the char derived from proteins due to melting during pyrolysis. By far, the solids from the pyrolysis of cellulose and lignin exhibited the most microporosity development (SSDR ≥ 650 m2 g-1), reaching, at the highest temperature studied, values close to those of physically activated carbons. Pyrolysis of the surrogate co-digested manure revealed the occurrence of Maillard reactions and also showed an interesting interaction involving CaCO3. The CaCO3 thermal decomposition is promoted when it is embedded into the organic matrix, where the CO2 generated during decomposition favored the Boudouard reaction of C from the organic components. This results in a lower biochar yield, 32 wt% versus 37 wt% (expected value), and a higher development of microporosity in the char.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Navarro, África; Fonts, Isabel; Ruiz, Joaquín; Ceamanos, Jesús; Gil-Lalaguna, Noemí; Ábrego, Javier; Gea, Gloria
The role of biogenic waste composition on pyrolysis: Part II – Char CO2 adsorption capacity Artículo de revista
En: Biomass and Bioenergy, vol. 197, pp. 107775, 2025, ISSN: 0961-9534.
@article{NAVARRO2025107775,
title = {The role of biogenic waste composition on pyrolysis: Part II – Char CO2 adsorption capacity},
author = {África Navarro and Isabel Fonts and Joaquín Ruiz and Jesús Ceamanos and Noemí Gil-Lalaguna and Javier Ábrego and Gloria Gea},
url = {https://www.sciencedirect.com/science/article/pii/S0961953425001862},
doi = {https://doi.org/10.1016/j.biombioe.2025.107775},
issn = {0961-9534},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Biomass and Bioenergy},
volume = {197},
pages = {107775},
abstract = {The CO2 adsorption capacities (AC) of biochars obtained at 350, 550, and 750 °C from the main organic (cellulose, lignin, and protein) and inorganic (CaCO3) macro-components of biogenic waste, as well as from co-digested manure (CDM), have been determined for different CO2 concentrations (2–83 vol%) at 25 °C and atmospheric pressure. CO2 adsorption isotherms have been determined using two different experimental methodologies: thermogravimetric and fixed-bed dynamic adsorption tests, yielding similar results. The composition effect has been analyzed by comparing the adsorption performance of the chars derived from individual macro-components and the potential interactions occurring during their co-pyrolysis. Lignin and cellulose-derived chars showed higher CO2 retention (≈77 mg gbiochar−1) than those produced from protein (≈40 mg gbiochar−1). Pyrolyzed CaCO3 exhibited negligible CO2 adsorption. For surrogate_CDM chars, prepared at pyrolysis temperatures high enough to decompose CaCO3 in the organic matrix, experimental results showed a synergistic effect, with AC between 14 % and 47 % higher than theoretical predictions. This decomposition promoted the reverse Boudouard reaction and enhanced char microporosity. However, the improvement was insufficient to offset the dilution effect caused by the high CaCO3 content. AC results have been discussed based on the biochar textural and chemical properties, with ultramicroporosity being the key factor determining adsorption capacity. The AC of CDM-derived sorbents is similar to that of cellulose-derived, expressed per gram of waste (7–13 mg gwaste−1). Furthermore, the biochars retained at least 80 % of their initial AC after 3 adsorption-desorption cycles, indicating their potential for stable CO2 capture.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
Fonts, Isabel; Lázaro, Cristina; Cornejo, Alfonso; Sánchez, José Luis; Afailal, Zainab; Gil-Lalaguna, Noemí; Arauzo, Jesús
Bio-oil Fractionation According to Polarity and Molecular Size: Characterization and Application as Antioxidants Artículo de revista
En: Energy & Fuels, 2024, ISSN: 0887-0624, (Publisher: American Chemical Society).
@article{fonts_bio-oil_2024,
title = {Bio-oil Fractionation According to Polarity and Molecular Size: Characterization and Application as Antioxidants},
author = {Isabel Fonts and Cristina Lázaro and Alfonso Cornejo and José Luis Sánchez and Zainab Afailal and Noemí Gil-Lalaguna and Jesús Arauzo},
url = {https://doi.org/10.1021/acs.energyfuels.4c02641},
doi = {10.1021/acs.energyfuels.4c02641},
issn = {0887-0624},
year = {2024},
date = {2024-09-01},
urldate = {2024-09-01},
journal = {Energy & Fuels},
abstract = {Bio-oil obtained from biomass pyrolysis has great potential for several applications after being upgraded and refined. This study established a method for separating bio-oil into different fractions based on polarity and molecular size to extract phenolic and polyphenolic compounds with antioxidant properties. The fractions were analyzed using various spectroscopic and chromatographic techniques, such as GC/MS, FTIR, UV–vis, SEC, DOSY-NMR, 13C-NMR, and 31P-NMR. The antioxidant properties of these fractions were tested by examining their ability to improve the oxidative stability of biodiesel. The results strongly connected the bio-oil’s chemical functionalities and antioxidant power. During solvent fractionation, dichloromethane could extract phenolic structures, which were subsequently size-fractionated. The subfractions with lower molecular weight (in the order of monomers and dimers) outperformed the antioxidant potential of the crude bio-oil. Heavier subfractions from dichloromethane extraction did not show good antioxidant abilities, which was related to the low hydroxy group content. After solvent extraction, phenolic oligomers remained in the water-insoluble/dichloromethane-insoluble fraction, which showed good antioxidant potential despite its low solubility in biodiesel.},
note = {Publisher: American Chemical Society},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2023
Afailal, Zainab; Gil-Lalaguna, Noemí; Macías, Robert J.; Gonzalo, Alberto; Sánchez, José Luis
Production of Antioxidant Additives and High-quality Activated Biochar from Pyrolysis of Argan Shells Artículo de revista
En: BioEnergy Research, 2023, ISSN: 1939-1242.
@article{afailal_production_2023,
title = {Production of Antioxidant Additives and High-quality Activated Biochar from Pyrolysis of Argan Shells},
author = {Zainab Afailal and Noemí Gil-Lalaguna and Robert J. Macías and Alberto Gonzalo and José Luis Sánchez},
url = {https://doi.org/10.1007/s12155-023-10652-0},
doi = {10.1007/s12155-023-10652-0},
issn = {1939-1242},
year = {2023},
date = {2023-08-01},
urldate = {2023-08-01},
journal = {BioEnergy Research},
abstract = {An integral valorization route based on a pyrolysis process has been proposed to find sustainable applications for argan shells focused on the simultaneous production of activated biochar and antioxidant additives from bio-oil. The bio-oil obtained in the pyrolysis process was furtherly upgraded (hydrothermal treatment and extraction process) to obtain antioxidant additives. On the other hand, the biochar obtained in the pyrolysis was used as a feedstock to produce high-quality activated biochar (by physical activation with CO2). The increase in the pyrolysis temperature (350–550 °C) hardly affected the pyrolysis products distribution (biochar yields of 28–34 wt.% and bio-oil yields between 51 and 55 wt.%), but it led to a slight decrease in the content of phenolic monomers extracted from bio-oil (from 63 wt.% at 350 °C to 53 wt.% at 550 °C). When these extracted fractions were blended with biodiesel (<1 wt.%), improvements of up to 300% in biodiesel oxidation stability were attained. The hydrothermal treatment of the bio-oil did not show noteworthy effects either on the production or antioxidant performance of the extracted fractions if compared with the fractions extracted from the raw bio-oil. Regarding the valorization of argan shells biochar, the activated biochar prepared from it showed considerable potential as an adsorbent material for CO2 (125 mg of CO2 per g of the activated biochar) or phenols (complete removal of 99.6% in 4 h of contact time). It was characterized by a high BET surface area (up to 1500 m2/g), a high carbon content (up to 95 wt.%), low ash content (around 2 wt.%), and a pH of around 8.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Afailal, Zainab; Gil-Lalaguna, Noemí; Fonts, Isabel; Gonzalo, Alberto; Arauzo, Jesús; Sánchez, José Luis
Thermochemical valorization of argan nutshells: Torrefaction and air–steam gasification Artículo de revista
En: Fuel, vol. 332, pp. 125970, 2023, ISSN: 0016-2361.
@article{Afailal2023,
title = {Thermochemical valorization of argan nutshells: Torrefaction and air–steam gasification},
author = {Zainab Afailal and Noemí Gil-Lalaguna and Isabel Fonts and Alberto Gonzalo and Jesús Arauzo and José Luis Sánchez},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0016236122027946},
doi = {10.1016/J.FUEL.2022.125970},
issn = {0016-2361},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {Fuel},
volume = {332},
pages = {125970},
publisher = {Elsevier},
keywords = {},
pubstate = {published},
tppubtype = {article}
}